Estimation of the Lidar Height Offset in Coastal Vegetated Areas

نویسندگان

  • Jens Goepfert
  • Uwe Soergel
چکیده

Authorities operating in the field of coastal management require reliable area-wide height information for their responsibilities regarding to the safety of the coastal area. In this context the lidar technique replaces more and more traditional methods, such as terrestrial surveying, and is now the most important source for the generation of digital terrain models (DTM) in this zone. However, coastal vegetation interferes with the laser beam, resulting in a height offset for the lidar points depending on different vegetation types occurring in this region and their phenology. Various filter algorithms were developed for lidar data in vegetated areas, which are able to minimize this offset. But in very dense vegetation and hilly terrain these algorithms often fail resulting in certain residuals. In a previous approach the height offset was estimated based on grid data. In this algorithm the offset was linked to suitable features in the remote sensing data. A segment based supervised classification was performed using these features to partition the lidar data into different accuracy intervals. A major problem of this method arises from the fact that the accuracy intervals do not correspond to distinct and easily separable clusters in the feature space. Considering a single vegetation type the height offset exhibits a rather continuous characteristic. In a new approach this issue is tackled by modelling the offset with respect to the features using continuous functions. Additionally, feature extraction and classification are performed on raw data, in order to maintain the significance of the features by avoiding transformation artefacts and to increase the accuracy of the classification. On the basis of test data a comparison between the two methods is conducted to emphasize the problems and their solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Lidar Dtm Accuracy in Coastal Vegetated Areas

Digital terrain models (DTM’s) are widely used in coastal engineering. Reliable height information is necessary for different purposes such as calculating flood risk scenarios, change detection of morphological objects and hydrographic numeric modelling. In this specific field light detection and ranging (lidar) replaces step by step other methods such as terrestrial surveying. However, some ne...

متن کامل

An Approach for Filtering Lidar Data in Coastal Vegetated Areas Using Intensity Information and Multiple Echoes

Accurate digital terrain models (DTM) are one of the most important requirements for many applications in coastal management and safety, such as the calculation of the volume of dunes and dikes for the purpose of coastal protection. Airborne LIDAR sensors provide dense height information of large areas in an efficient manner, therefore such data are appropriate to derive suitable DTM. Besides r...

متن کامل

SRTM DEM Correction in Vegetated Mountain Areas through the Integration of Spaceborne LiDAR, Airborne LiDAR, and Optical Imagery

The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is one of the most complete and frequently used global-scale DEM products in various applications. However, previous studies have shown that the SRTM DEM is systematically higher than the actual land surface in vegetated mountain areas. The objective of this study is to propose a procedure to calibrate the SRTM DEM over l...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data

Large-scale coastal reclamation has caused significant changes in Spartina alterniflora (S. alterniflora) distribution in coastal regions of China. However, few studies have focused on estimation of the wetland vegetation biomass, especially of S. alterniflora, in coastal regions using LiDAR and hyperspectral data. In this study, the applicability of LiDAR and hypersectral data for estimating S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007